Решение:
а) Да, могло. Например, если числа записаны в порядке 
б) Всего по кругу записано 10 чисел. Для каждой пары соседних чисел мы ищем наибольший общий делитель, следовательно, получим 10 наибольших общих делителей. Если они все попарно различны, то хотя бы один из них не меньше 10.
Но такого быть не может, так как для данных чисел наибольший из всевозможных наибольших общих делителей есть 
в) Числа 7, 11 и 13 являются простыми, наибольшие общие делители этих чисел со всеми остальными числами равняются 1. Каждое из чисел имеет двух соседей, следовательно, хотя бы два числа из этих трёх будут иметь по крайней мере одного соседа, отличного от этих трёх чисел. Таким образом, хотя бы четыре из всех наибольших общих делителей будут равняться 1, то есть совпадать.
Следовательно, не может быть больше, чем семь попарно различных наибольших общих делителей, поскольку всего их десять, причём четыре совпадают. Для расстановки
получается ровно 7 попарно различных наибольших общих делителей.
Верно получены все обоснованные ответы в пунктах а, б и в - 4 балла
Верно получены обоснованные ответы в пунктах а и в, либо получены верные обоснованные ответы в пунктах б и в - 3 балла
Верно получен обоснованный ответы в пункте в, либо получены верные обоснованные ответы в пунктах а и б, пункт в не решен - 2 балла
Верно получен обоснованный ответ в пункте а, либо получен верный обоснованные ответ в пункте б - 1 балл
Решение не соответствует ни одному из критериев, перечисленных выше - 0 баллов
Ответ: а) да; б) нет; в) 7
Источник: NeoFamily